
J
H
E
P
0
9
(
2
0
0
8
)
0
6
1

Published by Institute of Physics Publishing for SISSA

Received: August 11, 2008

Accepted: August 20, 2008

Published: September 11, 2008

Four-loop lattice-regularized vacuum energy density of

the three-dimensional SU(3) + adjoint Higgs theory

F. Di Renzo,a M. Laine,bc Y. Schröderb and C. Torrerod
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1. Introduction

Given possible applications in cosmology and in the phenomenology of heavy ion collision

experiments, as well as the important theoretical role that the free energy density plays in

understanding the properties of any finite-temperature system, the pressure (or minus the

free energy density) of Quantum Chromodynamics (QCD) is one of the central observables

of relativistic thermal field theory. In this paper we focus on its determination at tem-

peratures above a few hundred MeV, where the system is deconfined; there, if anywhere,

it should eventually be possible to establish a quantitative first-principles description in

terms of the temperature and the fundamental parameters of the theory.

Given the importance of the problem, a huge amount of work has already been carried

out on the topic. (The references most directly related to the present work are cited at the

beginning of the next section.) In general, the approaches can be divided into numerical (i.e.

lattice Monte Carlo) and analytic (i.e. weak-coupling expansion or various improvements

thereof) techniques. In addition, there is a strategy — the one that we follow here —

which combines elements from both sides. The idea is to factorise the system into two

parts: “hard” momenta, whose contribution is perturbative, and “soft” momenta, which
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need to be treated non-perturbatively. (One benefit of this approach is that dynamical

quarks remain cheap even in the chiral continuum limit, since only gauge fields possess

soft momenta.) Our study concerns the non-perturbative soft part, but not directly its

lattice measurement; rather, the point is that for such a factorization to work, both sides

of the result need to be converted to the same regularization scheme, so that they can be

added together. In some situations, like in ours, such a scheme conversion can turn out to

be technically as demanding as the non-perturbative measurement itself, and this is the

ultimate challenge that we try to tackle in this work.

This paper is organised as follows. The general setup of factorising the pressure to

contributions from perturbatively computable terms, and ones that need to be estimated

numerically, as well as the role that the present study plays in this setup, is outlined

in section 2. The outline is made quantitative in section 3, where we define the precise

quantities that we want to determine. The tool used for the computation, Numerical

Stochastic Perturbation Theory, is reviewed in section 4. The numerical data is analysed

in section 5; our results and conclusions comprise section 6. In three appendices, we detail

the perturbative expressions that we have worked out explicitly in lattice regularization.

2. Outline of setup

At a high temperature T and a small gauge coupling constant g, there are parametrically

three different momentum scales in hot QCD: k ∼ πT, gT, g2T/π [1]. All the effects of the

hard scale, k ∼ πT , can be accounted for by a method called dimensional reduction [1, 2].

In particular, the pressure, or minus the free energy density, can be written as [3]

pQCD(T ) ≡ pE(T ) + lim
V →∞

T

V
ln

∫

DAa
i DAa

0 exp
(

−SE

)

, (2.1)

where V is the volume, Aa
i are gauge fields, Aa

0 are scalar fields in the adjoint representation,

and SE is a three-dimensional effective field theory, to be specified presently (the subscript

may refer to “Electrostatic QCD” [3]). The function pE(T ) gets contributions only from

the hard scale, k ∼ πT , and is computable in perturbation theory; the path integral with

SE contains the contributions of the soft modes, k ∼ gT, g2T/π, and should preferably be

determined non-perturbatively (the contributions from the modes k ∼ g2T/π are genuinely

non-perturbative [4, 5]; those from the modes k ∼ gT are in principle still perturbative,

but in general slowly convergent [3, 6 – 9], although some observables with possibly faster

convergence have also been found [10]). The same description applies also in the presence of

a small quark chemical potential [11], allowing to compute further quantities such as quark

number susceptibilities [12]. At least when treated non-perturbatively, Electrostatic QCD

appears to yield a quantitative description of the full four-dimensional theory up from about

T ∼ 1.5Tc, where Tc denotes the pseudocritical temperature of the QCD crossover (see,

e.g., ref. [13] and references therein).

Now, to give a precise meaning to eq. (2.1), requires the specification of a regularization

scheme. Though a purely perturbative challenge, the determination of pE(T ) is fairly

complicated in practice [6]. Therefore, it is preferable to use dimensional regularization for
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the algebra: all the 3-loop and 4-loop results available today have been obtained in the MS

scheme [3, 6 – 8, 14, 15].

Let us, correspondingly, denote the MS scheme “vacuum energy density” of the theory

defined by SE, with

f MS ≡ −
{

lim
V →∞

1

V
ln

∫

DAa
i DAa

0 exp
(

−SE

)

}

MS

, (2.2)

where V =
∫

ddx is the d-dimensional volume. Then eq. (2.1) becomes

pQCD(T ) =

{

pE(T )

}

MS

− T f MS . (2.3)

Though each part is scheme-dependent, the expression as a whole is not. In the following,

we concentrate exclusively on the determination of f MS.

To take further steps, we need to specify the effective action SE. It reads

SE =

∫

ddxLE , (2.4)

LE =
1

2
Tr [F 2

ij ] + Tr [Di, A0]
2 + m2

3Tr [A2
0] + λ3(Tr [A2

0])
2 + . . . . (2.5)

Here i = 1, . . . , d, d = 3 − 2ǫ, Fij = (i/g3)[Di,Dj ], Di = ∂i − ig3Ai, Ai = Aa
i T

a, A0 =

Aa
0T

a, and T a are hermitean generators of SU(Nc), normalised as Tr [T aT b] = δab/2.1 The

dimensionalities of g2
3 and λ3 are GeV1+2ǫ. There are also higher order operators, classified

in ref. [17], whose parametric importance has been analysed in ref. [8]; even though some

of them contribute at the same parametric order as some of the effects that we are after,

it is still a well-defined problem to start by determining the full non-perturbative effect

of the truncated form of the theory in eq. (2.5). Therefore we will ignore all higher order

operators in the following.

Now, f MS may include a part which is independent of m2
3. However, this part can be

evaluated by sending m2
3 → ∞, whereby the field A0 can be integrated out. Thereby the

problem reduces to that already considered in refs. [18, 14]. In the following, we concentrate

on the part of f MS which does depend on m2
3.

The part of f MS depending on m2
3 can be isolated through a partial derivative, which

in turn yields a condensate:2

∂m2
3
f MS =

〈

Tr [A2
0]

〉

MS

. (2.6)

Thus, if we are able to measure the condensate 〈Tr [A2
0]〉 in lattice regularization, and con-

vert the result to the MS scheme, we are able to determine the m2
3-dependent part of f MS

1In the present paper we concentrate on Nc = 3, but lattice measurements have previously been carried

out also for Nc = 2 [16]. For Nc ≥ 4, another independent quartic coupling should be included in eq. (2.5).
2This condensate is analogous to the Polyakov loop condensate, playing a role in various attempts at

improved effective theories of hot QCD (see, e.g., refs. [19, 20] and references therein), but it appears

difficult to promote the analogy to a precise relation.
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non-perturbatively. In principle this is, indeed, doable: the relation of the two regulariza-

tion schemes, which is exact in the continuum limit due to the super-renormalizability of

the theory in eq. (2.5), can be found in refs. [21, 22] (see also eq. (3.12) below).

Let us be a bit more specific about what we would like to achieve with the lattice

simulations. Note first that in the MS scheme, the m2
3-dependent part of f MS is known

analytically up to 4-loop order [23]. This corresponds to an expansion of the form
〈

Tr [A2
0]

〉

MS

= m3 + g2
3 ln

µ̄

m3
+

g4
3

m3
+

g6
3

m2
3

+ O
(

g8
3

m3
3

)

, (2.7)

where µ̄ is the MS scale parameter, and we have for simplicity omitted all numerical coef-

ficients, as well as terms containing λ3. What we would like to determine is the “remain-

der”, i.e. the sum of terms beyond the level that is already known analytically. Denoting

by 〈Tr [A2
0]〉a the condensate in lattice regularization, and by a the lattice spacing, the

remainder is
〈

Tr [A2
0]

〉R

MS

≡ lim
a→0

{〈

Tr [A2
0]

〉

a

− 1

a
− g2

3 ln
1

aµ̄

}

− m3 − g2
3 ln

µ̄

m3
− g4

3

m3
− g6

3

m2
3

, (2.8)

where the limit inside the curly brackets takes us to the MS scheme [21, 22], and the

subsequent continuum expression subtracts the known terms in eq. (2.7).

The problem with this procedure is that in practice the limit a → 0 in eq. (2.8) cannot

be taken exactly, but it introduces systematic errors. To carry out the limit requires a

fit ansatz; in three dimensions, discretization effects go like O(a). These dominant errors

could in principle be removed through an improvement program [24], but even if it had

been completed (which is presently not the case), one would still need an ansatz for the

subsequent terms, and at this point it is for instance not clear whether logarithms like

a2 ln(1/a) should be included. Yet, this may have a noticeable impact on the results.

Moreover, the ansatz is necessarily of a finite order; this means that there will remain

residual 1-loop discretization errors in the result, while the subsequent subtraction of the

continuum terms is attempting to take us to the 5-loop level and beyond. Evidently, this

situation is unsatisfactory; for a demonstration of the problems encountered, see ref. [12].

The goal of the present paper is, then, to determine the terms corresponding to those

in eq. (2.7) “exactly” in lattice regularization. That is, we do not carry out any expansion

in am3; only one in the loop order. The corresponding result contains the counterterms

needed for the limit in eq. (2.8); the finite terms in eq. (2.8); but also an infinite number

of higher order corrections, starting at O(am3). Then, we can write the remainder as

〈

Tr [A2
0]

〉R

MS

= lim
a→0

{〈

Tr [A2
0]

〉

a

−m3 f0(am3)−g2
3 f1(am3)−

g4
3

m3
f2(am3)−

g6
3

m2
3

f3(am3)

}

,

(2.9)

where fi are the functions to be determined. We of course still need to take the limit a → 0

at the end, as indicated by eq. (2.9), but we have gained in that we do not need to be as

worried about discretization errors as before: any number yielded by the difference inside

the curly brackets in eq. (2.9) is already an approximation for the remainder, and there is

no danger of 1-loop discretization errors overtaking an interesting 5-loop continuum effect.
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3. Precise setup

Let us now add the missing details to the formulation of the problem. The 4-loop compu-

tation of f MS in dimensional regularization has been described in detail in ref. [23]. The

mass parameter needs renormalisation,

m2
3,bare = m2

3(µ̄) + δm2
MS

, (3.1)

δm2
MS

=
1

(4π)2
µ−4ǫ

4ǫ
2(dA + 2)

(

−g2
3λ3CA + λ2

3

)

, (3.2)

where µ̄2 ≡ 4πµ2e−γE , CA ≡ Nc, and dA ≡ N2
c − 1. Consequently the renormalised mass

parameter satisfies the equation

µ̄
d

dµ̄
m2

3(µ̄) =
1

8π2
(dA + 2)

(

−g2
3λ3CA + λ2

3

)

. (3.3)

Here and in the following, we assume ǫ → 0 taken in all finite quantities. It is convenient

to define the dimensionless ratios

x ≡ λ3

g2
3

, (3.4)

y ≡ m2
3(µ̄ = g2

3)

g4
3

. (3.5)

As indicated, we choose µ̄ ≡ g2
3 for defining y.

Now, it is thought that the perturbative series for the pressure of QCD converges

very slowly [6, 7]. The reason for this can be traced back to the slow convergence of the

perturbative series for ∂m2
3
f MS [3, 25, 8]. Making use of the results of ref. [23], and inserting

the choice µ̄ = g2
3 , the known 4-loop result can be written as

〈

Tr [A2
0/g

2
3 ]

〉

MS,µ̄=g2
3

= − dA

(4π)

y
1

2

2

+
dA

(4π)2
1

4

{

CA

[

1 − 2 ln(4y)

]

+ x(dA + 2)

}

+
dA

(4π)3
1

4y
1

2

{

C2
A

[

89

12
+

π2

3
− 11

3
ln 2

]

+xCA(dA+2)

[

ln(4y) +
3

2

]

+x2 (dA + 2)

[

1 − ln(16y)

]

− x2

4
(dA + 2)2

}

+
dA

(4π)4
1

4y

{

2C3
A

[

43

4
− 491

768
π2

]

+ 10xC2
A

[

1 − π2

8

]

+xC2
A(dA + 2)

[

2 ln(4y) − 1

]

+2x2CA(dA+2)

[

36−π2

8
−ln(4y)

]

−x2CA(dA+2)2

−x3(dA + 2)(dA + 8)
π2

12
+ x3(dA + 2)2

}

. (3.6)
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The terms beyond eq. (3.6) die away as y−
3

2 at large y, modulo possible logarithms, but

realistic values of y are not that large (for Nc = 3, Nf = 3, y ≃ 0.39 [log10(T/ΛMS) + 1.0]).

The goal of a non-perturbative determination is therefore to sum the whole series beyond

these known terms.

We then move to the lattice side. To this effect, let us define the lattice action, Sa,

corresponding to eq. (2.4). The standard Wilson discretization yields

Sa = β
∑

x

∑

i<j

{

1 − 1

CA
Re Tr [Pij(x)]

}

+

+2a
∑

x

∑

i

{

Tr [A2
0(x)] − Tr [A0(x)Ui(x)A0(x + i)U †

i (x)]
}

+

+a3
∑

x

{

m2
3,bareTr [A2

0(x)] + λ3

(

Tr [A2
0(x)]

)2}

, (3.7)

where a is the lattice spacing, Ui(x) is a link matrix, x + i ≡ x + aǫ̂i, where ǫ̂i is a unit

vector, Pij(x) is the plaquette, and

β ≡ 2CA

g2
3a

. (3.8)

The bare mass parameter of eq. (3.7) reads [22]

m2
3,bare = m2

3(µ̄) + δm2
a , (3.9)

δm2
a = −

[

2g2
3CA + λ3(dA + 2)

]

Σ

4πa

+
1

(4π)2

{

2λ3(dA + 2)(λ3 − g2
3CA)

(

ln
6

aµ̄
+ ζ

)

− 2g2
3CAλ3(dA + 2)

(

Σ2

4
− δ

)

−g4
3C

2
A

[

5

8
Σ2 +

(

1

2
− 4

3C2
A

)

πΣ − 4(δ + ρ) + 2κ1 − κ4

]}

, (3.10)

where Σ ≈ 3.175911535625 is a three-dimensional hybercubic lattice integral which can

be expressed as Σ = (
√

3 − 1)Γ2[ 1
24 ]Γ2[1124 ]/48π2 [26];3 ζ, δ, ρ, κ1, κ4 are further lattice

integrals which are only known numerically [22]; and µ̄ ≡ g2
3 . This bare mass parameter

guarantees the existence of a continuum limit for any fixed m2
3(µ̄) (but O(a) discretization

effects remain [24]).

The derivative of the vacuum energy density, f a, with respect to the mass parameter

(bare or renormalized) yields then the quadratic condensate in lattice regularization,

∂m2
3
f a =

〈

Tr [A2
0]

〉

a

. (3.11)

This can be related to the MS condensate by [21, 22]
〈

Tr [A2
0/g

2
3 ]

〉

MS

= (3.12)

lim
β→∞

{〈

Tr [A2
0/g

2
3 ]

〉

a

−
[

dAΣβ

16πCA
+

dACA

(4π)2

(

ln β + ζ +
Σ2

4
− δ − ln

CAµ̄

3g2
3

)]}

.

3We thank D. Broadhurst for bringing these references to our attention.
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Writing the renormalised mass parameter in lattice units as

m̂ ≡ am3(µ̄ = g2
3) =

2CAy
1

2

β
⇔ y

1

2 =
βm̂

2CA
, (3.13)

where y was defined in eq. (3.5), we can express the lattice condensate as

1

dA

〈

Tr [A2
0/g

2
3 ]

〉

a
=

1

dAg2
3

∂m2
3
f a (3.14)

≡
(

βm̂

2CA

)+1

φ00(m̂) +

+

(

βm̂

2CA

)0{

φ10(m̂) + xφ11(m̂)

}

+

+

(

βm̂

2CA

)−1{

φ20(m̂) +
2

∑

n=1

xn

[

φ2n(m̂) + φ̃2n(m̂) ln

(

βm̂

2CA

)]}

+

+

(

βm̂

2CA

)−2{

φ30(m̂) +
3

∑

n=1

xn

[

φ3n(m̂) + φ̃3n(m̂) ln

(

βm̂

2CA

)]}

+

+O
(

βm̂

2CA

)−3

. (3.15)

Regarding the structure of this equation, we note that higher powers of logarithms than

the terms shown do not need to be considered, as will be explained below.

Now, super-renormalizability guarantees that only a finite set among the functions

φmn, φ̃mn diverge in the continuum limit. In fact, as can be deduced from eq. (3.12),

φ00 diverges as 1/m̂ and φ10 diverges as ln(1/m̂), but all the others are finite in the limit

m̂ → 0 [21]. In this limit, they then agree with the corresponding MS scheme expressions,

readily extracted from eq. (3.6), after taking note of eq. (3.13).

For m̂ 6= 0, the functions φmn, φ̃mn can be computed in lattice perturbation theory.

The first one, φ00, follows from a 1-loop computation, while φ10, φ11 require 2-loop com-

putations (details are given in appendix A). The functions φ̃21, φ̃22, φ̃31, φ̃32, φ̃33 can be

deduced from the fact that 〈Tr [A2
0]〉a is independent of µ̄; on the other hand φ00, φ10, φ11

have µ̄-dependence, emerging through the running of the MS mass parameter according to

eq. (3.3). This dependence must cancel against explicit 3-loop and 4-loop logarithms, con-

taining ln(6/aµ̄); these logarithms arise exclusively from the mass counterterm in eq. (3.10).

Therefore, the 3-loop and 4-loop coefficients φ̃21, φ̃22, φ̃31, φ̃32, φ̃33 can be deduced from

mass derivatives of the 1-loop and 2-loop expressions.

As far as the “genuine” 3-loop coefficients are concerned, we have computed explicitly

only φ21, φ22 (details are given in appendix A). These arise from graphs containing at least

one quartic coupling, which means that most of them (with one exception) factorise into

products of lower-order graphs.

To display the results, we use the notation of basic lattice integrals (Ĵa, Îa, Ĥa, Ĝa,

– 7 –
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B̂a) explained in appendix B. Denoting furthermore

K1(m̂
2) ≡ 2

[

Îa(m̂
2) + Îa(0) −

Σ

2π

]

Î ′a(m̂
2) + Îa(0)

[

1 + m̂2∂m̂2

]

Îa(m̂
2) +

+4

[

1 + m̂2∂m̂2

]

Ĥa(m̂
2) + Ĝ′

a(m̂
2) , (3.16)

K2(m̂
2) ≡ ∂m̂2K1(m̂

2)

= 2

[

Îa(m̂
2) + Îa(0) −

Σ

2π

]

Î ′′a (m̂2) + Îa(0)

[

2 + m̂2∂m̂2

]

Î ′a(m̂
2) +

+2

[

Î ′a(m̂
2)

]2

+ 4

[

2 + m̂2∂m̂2

]

Ĥ ′
a(m̂

2) + Ĝ′′
a(m̂

2) , (3.17)

K3(m̂
2) ≡ Î ′a(m̂

2)

[(

1 + m̂2∂m̂2

)

Ĥa(m̂
2) +

1

4
Ĝ′

a(m̂
2) − 1

(4π)2

(

ln
6

m̂
+ ζ +

Σ2

4
− δ

)]

+

+

[

Îa(m̂
2) − Σ

4π

][(

2 + m̂2∂m̂2

)

Ĥ ′
a(m̂

2) +
1

4
Ĝ′′

a(m̂
2)

]

+

+
1

2

[

Îa(m̂
2) − Σ

4π

][

Îa(m̂
2) +

(

1 +
m̂2

2

)

Îa(0) −
Σ

2π

]

Î ′′a (m̂2) +

+

[

Îa(m̂
2) +

1

2

(

1 +
m̂2

2

)

Îa(0) −
3Σ

8π

][

Î ′a(m̂
2)

]2

+

+
3

4

[

Îa(m̂
2) − Σ

6π

]

Îa(0)Î
′
a(m̂

2) , (3.18)

we obtain from appendix A, as well as from the continuum values in eq. (3.6):

φ00 =
1

2m̂
Îa(m̂

2) ≈ Σ

8πm̂
− 1

8π
+ O(m̂) , (3.19)

φ10 =
1

4
CA K1(m̂

2) ≈ CA

(4π)2

[

ln
3

m̂
+ ζ +

Σ2

4
− δ +

1

4
+ O(m̂)

]

, (3.20)

φ11 =
1

2
(dA + 2)

[

Îa(m̂
2) − Σ

4π

]

Î ′a(m̂
2) ≈ dA + 2

(4π)2

[

1

4
+ O(m̂)

]

, (3.21)

φ20 ≈ C2
A

(4π)3

[

89

48
− 11

12
ln 2 +

π2

12
+ O(m̂)

]

, (3.22)

φ21 = (dA + 2)CAm̂K3(m̂
2) ≈ (dA + 2)CA

(4π)3

[

1

2
ln 2 +

3

8
+ O(m̂)

]

, (3.23)

φ̃21 = −(dA + 2)CA

(4π)2
m̂ Î ′a(m̂

2) ≈ (dA + 2)CA

(4π)3

[

1

2
+ O(m̂)

]

, (3.24)

φ22 = (dA + 2)m̂

[

1

(4π)2
Î ′a(m̂

2)

(

ln
6

m̂
+ ζ

)

− 1

4
B̂′

a(m̂
2)

]

+

+
1

2
(dA + 2)2m̂

[

Îa(m̂
2) − Σ

4π

]

×

×
{[

Î ′a(m̂
2)

]2

+
1

2

[

Îa(m̂
2) − Σ

4π

]

Î ′′a (m̂2)

}

(3.25)

≈ dA + 2

(4π)3

[

1

4
− ln 2 − dA + 2

16
+ O(m̂)

]

, (3.26)
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φ̃22 =
dA + 2

(4π)2
m̂Î ′a(m̂

2) ≈ dA + 2

(4π)3

[

−1

2
+ O(m̂)

]

, (3.27)

φ30 ≈ C3
A

(4π)4

[

43

8
− 491

1536
π2 + O(m̂)

]

, (3.28)

φ31 ≈ C2
A

(4π)4

[

5

2

(

1 − π2

8

)

+ (dA + 2)

(

ln 2 − 1

4

)

+ O(m̂)

]

, (3.29)

φ̃31 = −1

2

(dA + 2)C2
A

(4π)2
m̂2K2(m̂

2) (3.30)

≈ (dA + 2)C2
A

(4π)4

[

1 + O(m̂)

]

, (3.31)

φ32 ≈ (dA + 2)CA

(4π)4

[

9

4
− π2

16
− ln 2 − dA + 2

4
+ O(m̂)

]

, (3.32)

φ̃32 =
(dA + 2)CA

(4π)2
1

2
m̂2K2(m̂

2) −

−(dA + 2)2CA

(4π)2
m̂2

{[

Î ′a(m̂
2)

]2

+

[

Îa(m̂
2) − Σ

4π

]

Î ′′a (m̂2)

}

(3.33)

≈ (dA + 2)CA

(4π)4

[

−1 + O(m̂)

]

, (3.34)

φ33 ≈ dA + 2

(4π)4

[

1

4
(dA + 2) − π2

48
(dA + 8) + O(m̂)

]

, (3.35)

φ̃33 =
(dA + 2)2

(4π)2
m̂2

{[

Î ′a(m̂
2)

]2

+

[

Îa(m̂
2) − Σ

4π

]

Î ′′a (m̂2)

}

(3.36)

≈ (dA + 2)2

(4π)4

[

0 + O(m̂)

]

. (3.37)

Note that at infinite volume, Îa(0) = Σ/4π, so that the functions K1, K2, K3 defined

in eqs. (3.16)–(3.18) can be simplified; however, in a finite volume, Σ/4π appearing in

the mass counterterm is kept fixed, while Îa(0), emerging from loops, gets modified (cf.

appendix B).

4. Numerical stochastic perturbation theory

In order to estimate numerically the coefficients φ20, φ30, φ31, φ32, φ33, for which only the

continuum values (m̂ → 0 limits) are known exactly (cf. eqs. (3.22), (3.28), (3.29), (3.32),

(3.35)), we find it convenient to rewrite the action in eq. (3.7) as

Slatt = β
∑

x, i < j

(

1 − 1

3
ReTr [Pij(x)]

)

−

−2
∑

x, i

Tr [Φ(x)Ui(x)Φ(x + i)U †
i (x)] +

+
∑

x

{

α(β, λ, m̂)Tr [Φ2(x)] + λ

(

Tr [Φ2(x)]

)2}

, (4.1)
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where Φ ≡ √
aA0, λ ≡ aλ3, m̂ ≡ am3(µ̄ = g2

3) and, for Nc = 3, eq. (3.10) implies that

α(β, λ, m̂) = 6

{

1 +
m̂2

6
−

(

6 +
5

3
λβ

)

3.175911525625

4πβ
− (4.2)

− 3

8π2β2

[(

10λβ − 5

9
λ2β2

)(

ln β + 0.08849

)

+
34.768

6
λβ + 36.130

]}

.

We write the expansion of the lattice condensate now as

〈Tr [Φ2] 〉 = d00 + d10
1

β
+ d11λ + d20

1

β2
+ d21

λ

β
+ d22λ

2 +

+d30
1

β3
+ d31

λ

β2
+ d32

λ2

β
+ d33λ

3 + O

(

λn

β4−n

)

. (4.3)

The coefficients here are related to those in eq. (3.15) through

d00 = dAm̂ φ00 , (4.4)

d10 = 2dACAφ10 , (4.5)

d11 = dAφ11 , (4.6)

d20 =
4dAC2

A

m̂
φ20 , (4.7)

d21 =
2dACA

m̂

[

φ21 + φ̃21 ln

(

βm̂

2CA

)]

, (4.8)

d22 =
dA

m̂

[

φ22 + φ̃22 ln

(

βm̂

2CA

)]

, (4.9)

d30 =
8dAC3

A

m̂2
φ30 , (4.10)

d31 =
4dAC2

A

m̂2

[

φ31 + φ̃31 ln

(

βm̂

2CA

)]

, (4.11)

d32 =
2dACA

m̂2

[

φ32 + φ̃32 ln

(

βm̂

2CA

)]

, (4.12)

d33 =
dA

m̂2

[

φ33 + φ̃33 ln

(

βm̂

2CA

)]

. (4.13)

The perturbative study is concretely carried out by means of Numerical Stochastic

Perturbation Theory (NSPT) [27, 28]. (It would certainly also be interesting to pursue the

same computation with standard techniques [29]; we comment on this in more detail in

section 6.) Its origins lie in Stochastic Quantization [30], based on introducing an extra

coordinate t and an evolution equation of the Langevin type, namely

∂tΦ(x, t) = −δΦS[Φ] + η(x, t) , (4.14)

where η(x, t) is a Gaussian noise. The usual Feynman-Gibbs path integral is recovered by

averaging over the stochastic time,

Z−1

∫

DΦ O[Φ(x)]e−S[Φ(x)] = lim
t→∞

1

t

∫ t

0
dt′ 〈O[Φη(x, t′)]〉η . (4.15)
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In the case of gauge degrees of freedom the Langevin equation reads

∂t̃Uη̃ = −i

(

∇S[Uη̃] + η̃

)

Uη̃ , (4.16)

where η̃(x, t̃) is another Gaussian noise, and t̃ is another fictitious time coordinate. Both

time coordinates are dimensionless, being effectively measured in spatial lattice units.

In practice, the time coordinates t, t̃ need to be discretized as well: t = nǫ, t̃ = nǫ̃,

n ∈ Z, with ǫ, ǫ̃ → 0 in the end. The discretized version of the scalar evolution, eq. (4.14),

reads

Φ(x, (n + 1)ǫ) = Φ(x, nǫ) − ǫδΦ(x)S +
√

ǫη(x, nǫ) , (4.17)

while the discretized version of the link evolution, eq. (4.16), becomes

Uk(x, (n + 1)ǫ̃) = exp

{

−i

[

ǫ̃∇k,xS +
√

ǫ̃η̃k(x, nǫ̃)

]}

Uk(x, nǫ̃) . (4.18)

Here η ≡ T aηa, η̃k ≡ T aη̃a
k ; we have rescaled the noise fields by a factor

√
ǫ,

√
ǫ̃ ; ∇k,x ≡

T a∇a
k,x, where T a are the generators of SU(3), normalised as Tr [T aT b] = δab/2; and the

covariant derivative is defined as

∇a
k,xS ≡ lim

δ→0

1

δ

{

S[eiδT a

Uk(x)] − S[Uk(x)]

}

. (4.19)

To be explicit, the expressions for the functional derivatives in eqs. (4.17), (4.18) read

δΦ(x)S = −
∑

k

[

Uk(x)Φ(x + k)U †
k(x) + U †

k(x − k)Φ(x − k)Uk(x − k)

]

+

+αΦ(x) + 2λΦ(x)Tr [Φ2(x)] , (4.20)

i∇k,xS =
β

12

∑

|l|6=k

{

Pkl(x) − P †
kl(x) − l1

3
Tr

[

Pkl(x) − P †
kl(x)

]}

+

+

[

Uk(x)Φ(x + k)U †
k(x),Φ(x)

]

. (4.21)

Furthermore we write the gauge-field time-step in the form ǫ̃ ≡ 10−3τ/β, while ǫ ≡ 10−3τ .

To now introduce NSPT, we expand the variables as

Φ(x) −→
∑

i

gi
0Φ

(i)(x) , Uk(x) = l1 +
∑

i=1

β− i
2 U

(i)
k (x) , (4.22)

where g0 is some small coupling; in our case, this role is played by two expansion parameters,

β−1/2 and λ. This results in a hierarchical system of difference equations that can be

numerically solved, to obtain the series in eq. (4.3) for 〈Tr [Φ2] 〉, for each τ . Subsequently,

we need to extrapolate to τ = 0.

Finally, we recall that the gauge field equation of motion possesses a zero-mode solu-

tion. When constructing the gauge field propagator, we omit this contribution; its effects

are, in any case, insignificant in the infinite-volume limit needed for constructing eq. (4.3).
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am3 ln β N τ

0.25 ln 24 11 – 22 5(a),10,15,20,25

0.30 ln 24 10 – 19 5(b),10,15,20,25

0.40 ln 24 7 – 16 5(c),10,15,20,25

0.50 ln 24 7 – 16 10,15,20,25

0.60 ln 24 10 – 15 10,15,20,25

0.80 ln 24 4 – 15 10,15,20,25

1.00 ln 24 5 – 13 10,15,20,25

1.00∗ ln 80 10 – 13 10,15,20,25

Table 1: The masses am3 ≡ am3(µ̄ = g2
3), counter term parts lnβ (cf. eq. (4.2)), box sizes N

(V = a3N3), and time discretizations τ studied. The box sizes were increased in unit steps within

the intervals shown. The time step τ = 5 was only used for the box sizes (a) N = 16, 19, 22; (b)

N = 16, 19; (c) N = 16. In total, our sample consists of 298 lattices.

5. Data analysis

Our approach involves three different extrapolations / interpolations in total: first, the

above-mentioned extrapolation to τ → 0; second, an extrapolation to infinite volume (N →
∞); third, an interpolation between the different m̂ = am3(µ̄ = g2

3) simulated. We discuss

these steps one by one. The complete data sample is listed in table 1.

5.1 Extrapolation τ → 0

Examples of the τ → 0 extrapolations are shown in figure 1, at am3 = 0.25, N = 22. (We

omit, for layout-reasons, the simplest coefficient d00.) The data immediately lead to the

important observation that the shapes of the curves are practically the same for d10, d20

and d30; for d11, d21 and d31; and for d22 and d32. In other words, the behaviour as a

function of τ is dictated by the number of scalar couplings λ that are associated with the

coefficient. (This is at least partly due to the simple way in which we chose the time steps

related to gauge and scalar field time evolutions; with some tuning, it might have been

possible to optimise the time steps such that the time evolutions would have been more

balanced [31].)

We have used the data at τ = 5, which were the most expensive ones to produce

and are only available for a subset of the parameter values, as a probe for the type of

extrapolation that should be used for obtaining the τ → 0 limits. Indeed, we choose the

order of the polynomial fit in τ low enough so that the results remain more or less stable in

the inclusion of the τ = 5 points. For d10, d20 and d30, this requires linear extrapolations;

for the other coefficients, we use quadratic fits. Nevertheless, we note that in some cases the

results of the extrapolations do change by a statistically significant amount in the inclusion

of the points with τ = 5, indicating that our systematic errors may be non-negligible.

Given the possible existence of systematic errors, it is important to crosscheck the

results in a number of known cases. As has been discussed in section 3, we do have exact

results available, for any given am3 and box size N , for the coefficients d00, d10, d11, d21, d22.
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Figure 1: The results for dij as a function of τ , at am3 = 0.25, N = 22. The curves show the

results of linear or quadratic fits.

In figures 2, 3 we compare the τ → 0 extrapolations, based on 4 τ ’s in most cases, and on

5 τ ’s where available, with the exact values.

We observe that, in general, the results of the τ → 0 extrapolations do scatter around

the correct values. The exception is d10, and to a lesser extent d21, at small volumes. We

suspect that the reason for this is related to the way in which the zero-modes are subtracted

in standard lattice perturbation theory (i.e. “exact values”, cf. appendix B) and in NSPT,

respectively. Nevertheless, given that the discrepancy rapidly disappears with increasing

volume, there does not appear to be serious reason for concern.

Moreover, we note that the extrapolations including τ = 5 are in general closer to

the exact values than those excluding it. In a few cases, the correct value is between the
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Figure 2: The results for d00 and d10 after the τ → 0 extrapolation, as a function of the inverse

box size in “physical” units (m3L = am3N), together with the exact values. The (infinite volume)

“extrapolation” denoted with the closed square refers to the procedure defined around eq. (5.3).

extrapolations based of 4 and 5 τ ’s; in other words, the data point at τ = 5 “overcorrects”

the result of the extrapolation. Based on these tests, we have decided to always include

extrapolations based on 4 and, where available, 5 τ ’s, as independent estimates of the

intercepts at τ = 0. The extrapolations based on 5 τ ’s have smaller error bars, and thus

more weight in the subsequent fits; at the same time, the inclusion of the extrapolations

based on 4 τ ’s allows us to correct for the mentioned overshooting in the cases where it

does take place.

5.2 Extrapolation N → ∞

Given the results of the τ → 0 extrapolations (the complete data set, apart from d00, is

shown in figure 4), the next step is to extrapolate to infinite volume.

As figure 4 shows, finite-volume effects become small at large volumes. However, the

box size N = L/a required for this grows as the mass am3 decreases (the behaviour is

more or less universal as a function of m3L). In addition, some of the coefficients appear

to require larger volumes than others. For the smallest masses, in particular, we are in

many cases not yet in a region where all volume dependence has died out.

To be able to deal with this situation, some theoretical knowledge about the func-

tional dependence on the finite volume is needed. The situation is complicated by the fact

that there are both massless and massive fields in the system; therefore both powerlike

– 14 –



J
H
E
P
0
9
(
2
0
0
8
)
0
6
1

0.00 0.10 0.20 0.30 0.40
1/m

3
L

0.14

0.16

0.18

0.20

d 11

exact

NSPT (4 τ’s)

NSPT (5 τ’s)

extrapolation

a m
3
 = 0.25

0.00 0.10 0.20 0.30 0.40
1/m

3
L

0.14

0.16

0.18

0.20

d 11

exact

NSPT (4 τ’s)

NSPT (5 τ’s)

extrapolation

a m
3
 = 0.30

0.00 0.10 0.20 0.30 0.40
1/m

3
L

0.14

0.16

0.18

0.20

d 11

exact

NSPT (4 τ’s)

NSPT (5 τ’s)

extrapolation

a m
3
 = 0.40

0.00 0.10 0.20 0.30 0.40
1/m

3
L

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

d 21

exact

NSPT (4 τ’s)

NSPT (5 τ’s)

extrapolation

a m
3
 = 0.25

0.00 0.10 0.20 0.30 0.40
1/m

3
L

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

d 21

exact

NSPT (4 τ’s)

NSPT (5 τ’s)

extrapolation

a m
3
 = 0.30

0.00 0.10 0.20 0.30 0.40
1/m

3
L

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

d 21

exact

NSPT (4 τ’s)

NSPT (5 τ’s)

extrapolation

a m
3
 = 0.40

0.00 0.10 0.20 0.30 0.40
1/m

3
L

-0.30

-0.25

-0.20

-0.15

d 22

exact

NSPT (4 τ’s)

NSPT (5 τ’s)

extrapolation

a m
3
 = 0.25

0.00 0.10 0.20 0.30 0.40
1/m

3
L

-0.30

-0.25

-0.20

-0.15

d 22

exact

NSPT (4 τ’s)

NSPT (5 τ’s)

extrapolation

a m
3
 = 0.30

0.00 0.10 0.20 0.30 0.40
1/m

3
L

-0.30

-0.25

-0.20

-0.15

d 22

exact

NSPT (4 τ’s)

NSPT (5 τ’s)

extrapolation

a m
3
 = 0.40

Figure 3: Like figure 2 but for d11, d21, d22.

and exponential volume dependences appear. However, an inspection of the known cases

(figures 2, 3) suggests than in practice the magnitude of the power corrections is much

smaller than that of the exponential ones so that, strangely enough, the latter dominate

in the volumes where our data lies. In this situation, we could then expect the dominant

volume behaviour to be some exponential, dij(m3L)− dij(∞) ∼ exp(−m3L)/(m3L)α. Un-

fortunately, an inspection of some of the known cases (particularly d22) shows that, again

because of the fairly small volumes reached in practice, the behaviour is not given by a

simple exponential, but that there are at least two competing universal functions, because

the position of the maximum in m3L evolves slightly with am3. At the same, allowing for

too many free functional forms in the fits does not lead to good results either, because a

long extrapolation is needed, so that the ansatz needs to be fairly constrained.
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Figure 4: Shown are the τ → 0 limits for the coefficients dij , as a function of the inverse box size

in “physical” units (m3L = am3N). The data for am3 = 1.0 indicated with the pluses (+) is with

ln β = ln 80; the other cases are with lnβ = ln 24.

Having tested many procedures in the cases where exact results are available, we have

finally chosen the following strategy in order to deal with these challenges. Let us consider

a mass like am3 = 0.8. Figure 4 shows that this one has a reasonable plateau at affordable

N ≤ 15 for all the coefficients dij , but still the behaviour of the data is not too flat (i.e.,

some volume dependence is detectable). One can then extract an infinite-volume value

dij(∞) by fitting a constant to data in the range of the plateau, and subtract it from the

data in order to obtain the quantities

gij(m3L) ≡ dij(m3L) − dij(∞) . (5.1)
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Subsequently, one can try to obtain a reasonable interpolating fit fij(m3L) for gij(m3L),

allowing to go also to other values of m3L than those simulated at am3 = 0.8. In practice,

we find that in the range m3L > 2.5 that we have considered (cf. table 1), our data for

am3 = 0.8 can be well modelled, for instance, by the ansatz

fij(x) ≡ e−x

[

γ
(1)
ij + γ

(2)
ij

1

x
+ γ

(3)
ij

1

x2

]

, x = m3L , (5.2)

where γ
(n)
ij are fit parameters. We have also experimented with other ansätze, but do not

find a significant effect on our final results.

After this empirical determination of the finite-volume effects in one well-controlled

case, we can go back to the other masses am′
3, and use the fits fij as a constrained ansatz.

However, as already mentioned, there are cases, such as d22, where the position of the

maximum evolves with am3; therefore the results cannot be described by one universal

function in our modest volumes. To incorporate this fact, we allow eq. (5.2) to in general

split up into two functions, and take a finite-size scaling ansatz of the form

dij(x
′) = dij(∞) + Aij(am′

3) × e−x′

[

γ
(1)
ij

]

+ Bij(am′
3) × e−x′

[

γ
(2)
ij

1

x′
+ γ

(3)
ij

1

(x′)2

]

, (5.3)

where x′ ≡ m′
3L; dij(x

′) are the direct measurements at the mass am′
3 for various N = L/a;

and dij(∞), Aij(am′
3) and Bij(am′

3) are volume-independent fit coefficients. Among the

exactly known coefficients, the only case where the results change significantly while going

from eq. (5.2) to the more general eq. (5.3) is precisely d22(∞); among the unknown ones,

the ansatz does systematically affect also d20(∞), and particularly d30(∞), at the smallest

masses. For instance, in the last case, the values of d30(∞) would be as much as ∼ 10σ

higher at the two smallest masses if we employed eq. (5.2) throughout. In the following,

we cite results based on eq. (5.3), for reasons now to be explained.

In figures 2, 3, the results of such fits are compared with the exact results at the

smallest masses. We do find compatibility within statistical errors (∼ 2σ) in all cases. The

results for the coefficients dij ≡ dij(∞), both fitted and exact, are given in table 2 for all

masses. Only one “failure” can be detected, namely the coefficient d10 at the largest masses

am3 = 0.80, 1.00, where our (very small) NSPT error bars appear to be underestimated

(the difference is ∼ 10σ). Given that the largest masses are the least important ones for the

subsequent steps, we have decided to let this problem “pass”; let us stress, in any case, that

the overall excellent agreement is a very non-trivial result, as a long extrapolation needs to

be carried out, and could only be achieved after a considerable amount of experimenting

with various procedures.

Encouraged by these tests, as well as by the indication in figures 1, 4 that d20, d30

could more or less behave like d10; d31 like d21 and d11; and d32 like d22; we then apply the

same procedure to the remaining coefficients. The results are given in the lower-most panel

in table 2 (errors are statistical only). Finally, all the results, but with the normalization of

section 3, are shown in figures 5, 6 (the exactly known values of φ̃21, φ̃22, φ̃31, φ̃32, φ̃33 have

been used as input to convert d21, d22, d31, d32, d33 to φ21, φ22, φ31, φ32, φ33, respectively; cf.

eqs. (4.8)–(4.13). The functions φ̃21, φ̃22, φ̃31, φ̃32, φ̃33 have been numerically crosschecked

only at am3 = 1.00, where simulations with two different ln β were carried out; cf. table 1).
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exact

am3 d00 d10 d11 d21 d22

0.25 0.92893 2.9249 0.13737 2.7649 -0.19780

0.30 0.91214 2.7230 0.13855 2.6428 -0.17972

0.40 0.87839 2.3909 0.13998 2.4058 -0.15127

0.50 0.84462 2.1210 0.14017 2.1949 -0.12936

0.60 0.81103 1.8924 0.13919 2.0074 -0.11150

0.80 0.74518 1.5201 0.13422 1.6830 -0.083553

1.00 0.68209 1.2285 0.12612 1.4072 -0.062617

1.00∗ 0.68209 1.2285 0.12612 1.8283 -0.086011

fitted

am3 d00 d10 d11 d21 d22

0.25 0.9299(6) 2.923(3) 0.1362(6) 2.74(4) -0.199(2)

0.30 0.9110(7) 2.720(3) 0.1384(5) 2.63(3) -0.177(2)

0.40 0.8782(4) 2.392(2) 0.1392(3) 2.39(1) -0.1509(7)

0.50 0.8451(3) 2.122(1) 0.1403(4) 2.191(6) -0.1292(4)

0.60 0.8113(5) 1.893(1) 0.1384(4) 1.994(6) -0.1110(4)

0.80 0.7455(1) 1.5223(2) 0.13414(7) 1.683(1) -0.08345(7)

1.00 0.6823(1) 1.2309(2) 0.12614(5) 1.4077(7) -0.06255(5)

1.00∗ 0.6822(3) 1.230(1) 0.1261(1) 1.829(3) -0.08596(16)

fitted

am3 d20 d30 d31 d32 d33

0.25 16.49(3) 109.4(4) 7.2(7) -2.16(6) -0.060(19)

0.30 14.09(3) 81.8(3) 9.6(3) -1.73(5) -0.038(10)

0.40 10.87(1) 52.2(1) 9.4(1) -1.27(1) -0.029(3)

0.50 8.74(1) 36.7(1) 8.61(5) -0.916(7) -0.0201(7)

0.60 7.18(1) 27.2(1) 7.59(5) -0.670(6) -0.0155(5)

0.80 5.058(2) 16.11(2) 6.035(7) -0.3522(9) -0.01423(6)

1.00 3.664(1) 10.16(1) 4.652(4) -0.1605(5) -0.01327(3)

1.00∗ 3.666(6) 10.19(6) 6.46(2) -0.196(3) -0.01677(11)

Table 2: The coefficients dij (cf. eq. (4.3)) in the infinite-volume limit. The starred mass refers to

ln β = ln 80; the others to ln β = ln 24. The numbers in parentheses indicate the statistical errors

of the last digits shown.

5.3 Interpolation in am3

. The remaining task is to provide interpolating fits for our functions φij(am3), φ̃ij(am3).

Indeed, lattice simulations such as those in ref. [12] correspond to values of am3, given by

eq. (3.13), as well as lattice spacings ln β, which are in the range of our study, but seldom

coincide exactly with our values. The purpose of the interpolating fits is to nevertheless

make our results usable for the analysis of lattice simulations.
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Figure 5: Shown are the coefficients in eq. (3.15), as a function of am3. The polynomial fits are of

third order in am3, and have been constrained to go through the continuum points; the logarithmic

fits include the additional term am3 ln(1/am3), cf. eq. (5.8).

In order to carry out the interpolating fits, a fit ansatz is again needed. Since the

continuum limit corresponds to am3 → 0, it may be reasonable to use a finite-order poly-

nomial in am3 for this purpose. However, individual graphs do lead to other structures

as well, particularly logarithms like am3 ln(1/am3) (cf. eqs. (B.9), (B.12)). Even though

these logarithms cancel in all the analytically known terms, we are not aware of a proof

excluding them in general. In particular, the lattice simulations of ref. [12] strongly sug-

gest the presence of such a logarithm, affecting the approach to the continuum limit, and

it would then be natural for it to appear in the coefficient φ20, which is numerically the

most important unknown ingredient entering the analysis of ref. [12].
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Figure 6: Continued from figure 5

Given these considerations, we have carried out fits of two types. Defining

φ00 =
Σ

8πam3
+ φr

00 , (5.4)

φ10 =
CA

(4π)2
ln

1

am3
+ φr

10 , (5.5)

φij = φr
ij , (ij) 6= (00), (10) , (5.6)

we have considered a polynomial fit,

φr
ij(am3) = a

(0)
ij + a

(1)
ij × am3 + a

(2)
ij × (am3)

2 + a
(3)
ij × (am3)

3 , (5.7)

and a logarithmic one,

φr
ij(am3) = b

(0)
ij + b

(1′)
ij × am3 ln

1

am3
+ b

(1)
ij × am3 + b

(2)
ij × (am3)

2 + b
(3)
ij × (am3)

3 . (5.8)

The fits have been constrained to have the correct continuum values aij(0), bij(0) which

are known in all cases (cf. section 3). The fit functions are illustrated in figures 5, 6, and

the results for the coefficients are given in tables 3, 4.

Two main observations can be made from the fits:

• In all cases where exact results are available, the logarithmic fits agree reasonably

well with the polynomial ones. This is expected in the sense that we know that no

logarithms exist in the exactly known functions.
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coefficients a
(0)
ij a

(1)
ij a

(2)
ij a

(3)
ij χ2/d.o.f.

∗φr
00 -0.039789 -0.0062086 0.0056620 -0.00076693 —

∗φr
10 0.038310 -0.014881 -0.00082279 0.0029967 —

∗φ11 0.015831 0.0076464 -0.0094444 0.0017264 —

φ20 0.0092578 0.027798 -0.039072 0.014739 55.07

∗φ21 0.010909 0.014947 -0.0022681 -0.0043976 —

∗φ22 -0.0053827 -0.0050144 0.0074469 -0.0014995 —

φ30 0.0024038 0.0071490 -0.0020206 -0.0016577 19.83

φ31 0.0013885 -0.0035354 0.024195 -0.013013 0.996

φ32 -0.0018767 -0.0049224 0.0013548 0.0029473 1.966

φ33 -0.00031675 -0.00036476 -0.00032547 -0.00014179 1.063

∗φ̃21 0.0075590 0.0023970 -0.0033645 0.00069377 —

∗φ̃22 -0.0025197 -0.00079883 0.0011212 -0.00023111 —

∗φ̃31 0.0036091 0.0031005 -0.00069559 -0.00088573 —

∗φ̃32 -0.0012030 -0.0026312 0.0043532 -0.0011224 —

∗φ̃33 0.0 0.00053248 -0.0013736 0.00047246 —

Table 3: The fit coefficients allowing to estimate the functions φij , φ̃ij in the range 0.0 ≤ am3 ≤ 1.0,

according to eq. (5.7). In the cases marked with a star, the fits have been carried out to the exact

results rather than to NSPT data (we cite no χ2/d.o.f. here because no error bars can be assigned

to the exact numbers); the accuracy of their description through a polynomial fit is on the per cent

level.

coefficients b
(0)
ij b

(1′)
ij b

(1)
ij b

(2)
ij b

(3)
ij χ2/d.o.f.

φ20 0.0092578 0.0097310 0.0090404 -0.010317 0.0047392 0.128

φ30 0.0024038 -0.0036880 0.014462 -0.013444 0.0024569 1.185

φ31 0.0013885 -0.0017147 -0.00022591 0.019122 -0.011248 0.932

φ32 -0.0018767 0.0058403 -0.016324 0.018943 -0.0032415 0.361

φ33 -0.00031675 -0.0029965 0.0052048 -0.0086842 0.0026476 0.737

Table 4: The fit coefficients allowing to estimate the functions φ20, φ30, φ31, φ32, φ33 in the range

0.0 ≤ am3 ≤ 1.0, according to eq. (5.8).

• For the most important unknown function, φ20, the logarithmic fit does appear to

produce a markedly better description of our data than a polynomial fit; χ2/d.o.f.

decreases dramatically, from ∼ 55 to ∼ 0.13. (This is the case also for the second-
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most important unknown, φ30, where χ2/d.o.f. decreases from ∼ 20 to ∼ 1.2.)

This observation would appear to be in accordance with the indications from lattice

simulations [12]. In fact, the authors in ref. [12] estimated the logarithmic term to

be
〈

Tr [A2
0/g

2
3 ]

〉

a
≃ . . . + (0.10 . . . 0.13) × g2

3a ln(1/a), which in our units converts to

b
(1′)
20 ≃ (0.10 . . . 0.13)/dA = 0.012 . . . 0.017. Though the agreement with our value,

b
(1′)
20 ≈ 0.00973, is not perfect, the order of magnitude is the same. It would be

interesting to re-analyze the results of ref. [12] with the coefficient of the logarithm

fixed to our value.

In summary, then, there appear to be good reasons to expect the presence of logarithms in

φ20 and φ30. To unambiguously confirm this expectation, it would obviously be very inter-

esting to find a way to improve on the accuracy of the determination of these coefficients,

controlling in particular the difficult-to-estimate systematic errors that are related to the

τ → 0 and N → ∞ extrapolations in the present method. It would also be important to

improve on the values of the coefficients associated with scalar self-couplings, φ31, φ32, φ33,

although this would mostly serve as a theoretical consistency check, given that the values

of λ3/g
2
3 corresponding to physical finite-temperature QCD are very small [16].

6. Conclusions

The purpose of this paper has been to estimate the (Debye) mass dependent part of the

vacuum energy density of the three-dimensional SU(3) + adjoint Higgs theory, up to 4-

loop order in lattice perturbation theory. The result can be parametrized in terms of

the coefficients φij, φ̃ij , defined in eq. (3.15). We have worked out the expressions for a

number of these coefficients analytically (eqs. (3.19)–(3.36)), and estimated the remaining

ones, φ20, φ30, φ31, φ32, φ33, for which only the continuum values are known analytically,

with the help of Numerical Stochastic Perturbation Theory. The results are illustrated in

figures 5, 6, and parametrized in terms of simple fits in eqs. (5.7), (5.8).

The main practical use of our results is that when combined with lattice Monte Carlo

data, they should allow to improve on the analysis of the sum (beyond the known 4-loop

order) of infrared sensitive contributions to the pressure [25] and quark number suscepti-

bilities [12] of hot QCD, given that discretization errors up to the 4-loop order can now be

subtracted. However, our results might also have some theoretical interest beyond these

particular applications. For instance, they serve as a consistency check of the 4-loop MS-

scheme computation of ref. [23] (in the sense that our results appear to be consistent with

the continuum values indicated in figures 5, 6), as well as of the super-renormalizability

of the theory considered and the power-counting arguments presented for it in ref. [21] (in

the sense that no indications of ultraviolet divergences apart from the known 1-loop and

2-loop ones in φ00, φ10 were seen).

Concerning the new coefficients φ20, φ30, φ31, φ32 and φ33, we unfortunately have

to acknowledge that it appears difficult to improve significantly on the accuracy of our

results with the present techniques. The problem is that two different extrapolations,

τ → 0 and N → ∞, are needed in order to obtain the values at any fixed am3, and both
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of these extrapolations introduce systematic and statistical errors. Therefore there is a

need to crosscheck our results, and improve upon them, with standard techniques [29].

Nevertheless, even in that approach, our study should serve as a basic framework. In

particular, we would like to stress the insight that it is valuable to determine the coefficients

φij , φ̃ij as functions of am3, rather than to carry out an expansion in small am3, since

realistic values of am3 (∼ 0.1 . . . 0.5 [12]) are in a region where the functions show more

structure than just linear terms (cf. figures 5, 6). The most important coefficients to

determine are φ20 and φ30, which are independent of the scalar self-coupling, and for

am3 ≪ 1, a concrete challenge is to confirm or disprove the existence of the logarithmic

term ∼ O(a ln(1/a)) in φ20, for which independent indications have been seen in ref. [12]

and in the present study.
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A. Graph-by-graph results for the vacuum energy density

We list here results for the mass-dependent part of the vacuum energy density f a of the

theory in eq. (3.7) (through eq. (3.11) this produces the condensate that we are interested

in). At the 3-loop level we have only kept terms involving at least one λ3. In the graphical

notation to be used below, solid/wiggly lines represent tree-level A0/Ai lattice propagators,

respectively.

1-loop and 2-loop graphs. For brevity, we denote in the following m ≡ m3(µ̄). The

integrals appearing are defined in appendix B, and in terms of these, the results read

(d = 3):

=
dA

2
Ja(m

2) , (A.1)

=
λ3

4
dA(dA + 2)[Ia(m

2)]2 , (A.2)

+ =
g2
3

4
dACA

{

(2d − 4)Ia(0)Ia(m
2) + [Ia(m

2)]2 + 4m2Ha(m
2) +

+ a2

[

m2Ia(0)Ia(m
2) − Ia(0)/a

d + Ga(m
2)

]}

. (A.3)

3-loop graphs involving λ3.

=
λ2

3

4
dA(dA + 2)2[Ia(m

2)]2I ′a(m
2) , (A.4)

= −λ2
3

4
dA(dA + 2)Ba(m

2) , (A.5)
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+ =
g2
3λ3

4
dACA(dA + 2)Ia(m

2)

{

(2d − 4)Ia(0)I
′
a(m

2) + (A.6)

+ 2Ia(m
2)I ′a(m

2) + 4Ha(m
2) + 4m2H ′

a(m
2) +

+ a2

[

Ia(0)Ia(m
2) + m2Ia(0)I

′
a(m

2) + G′
a(m

2)

]}

,

= 0 . (A.7)

Mass counterterm contributions up to 3-loop order. Gauge field “mass coun-

terterms” (arising from the Haar integration measure) are not displayed, as they do not

contribute to terms involving at least one λ3.

× =
dA

2
δm2

aIa(m
2) , (A.8)

× × =
dA

4
(δm2

a)
2I ′a(m

2) , (A.9)

× =
λ3

2
dA(dA + 2)δm2

aIa(m
2)I ′a(m

2) , (A.10)

×
+× =

g2
3

4
dACAδm2

a

{

(2d − 4)Ia(0)I
′
a(m

2) + (A.11)

+ 2Ia(m
2)I ′a(m

2) + 4Ha(m
2) + 4m2H ′

a(m
2) +

+ a2

[

Ia(0)Ia(m
2) + m2Ia(0)I

′
a(m

2) + G′
a(m

2)

]}

.

B. Basic lattice integrals

We detail here the definitions of the basic lattice integrals that appear in the expressions

discussed in section 3. The integration measure is
∫

dp ≡
∫ π

−π

d3p

(2π)3
, (B.1)

and we define the standard lattice momenta as

p̃i ≡ 2 sin
pi

2
, p̃2 ≡

3
∑

i=1

p̃2
i . (B.2)

The integrals appearing then read (we use hats as a reminder of the use of lattice units in

these expressions):

Ĵa(m̂
2) ≡

∫

dp ln(p̃2 + m̂2) , (B.3)

Îa(m̂
2) ≡

∫

dp
1

p̃2 + m̂2
, (B.4)

Ĥa(m̂
2) ≡

∫

dp dq
1

(p̃2 + m̂2)(q̃2 + m̂2)(̃p + q)
2 , (B.5)

Ĝa(m̂
2) ≡

∫

dp dq

∑

i p̃
2
i q̃

2
i

(p̃2 + m̂2)(q̃2 + m̂2)(̃p + q)
2 . (B.6)
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Small-m̂ expansions for these functions have been worked out in refs. [21, 22] and are given,

to the order that was used for the small-m̂ expansions in section 3, by

Ĵ ′
a(m̂

2) = Îa(m̂
2) , (B.7)

Îa(m̂
2) =

1

4π

[

Σ − m̂ + O(m̂2)

]

, (B.8)

Ĥa(m̂
2) =

1

(4π)2

[

ln
3

m̂
+

1

2
+ ζ + O(m̂)

]

, (B.9)

Ĝa(m̂
2) =

1

(4π)2

[

16κ1 − 4δ m̂2 + O(m̂3)

]

, (B.10)

where Σ, ζ, κ1 and δ are numerical coefficients mentioned below eq. (3.10). Furthermore,

we define a 3-loop “basketball” integral through

B̂a(m̂
2) ≡

∫

dp dq dr
1

(p̃2 + m̂2)(q̃2 + m̂2)(r̃2 + m̂2)[ ˜(p + q + r)
2
+ m̂2]

. (B.11)

In this case the small-m̂ expansion reads

B̂a(m̂
2) =

1

(4π)3

[

Σ × θ − m̂

(

4 ln
3

2m̂
+ 4ζ + 6

)

+ O(m̂2)

]

. (B.12)

The derivation of this result, which has to our knowledge not appeared in the literature

before, as well as a numerical estimate for the new coefficient θ, are given in appendix C.

The expressions in appendix A employ the functions

Ja(m
2) ≡ 1

a3
Ĵa(m̂

2) , (B.13)

Ia(m
2) ≡ 1

a
Îa(m̂

2) , (B.14)

Ha(m
2) ≡ Ĥa(m̂

2) , (B.15)

Ga(m
2) ≡ 1

a4
Ĝa(m̂

2) , (B.16)

Ba(m
2) ≡ 1

a
B̂a(m̂

2) , (B.17)

where a is the lattice spacing, and m̂ ≡ am.

In a finite volume, V = (aN)3, the momentum integrations get replaced with

∫

dp f(p) → 1

N3

N−1
∑

n1=0

N−1
∑

n2=0

N−1
∑

n3=0

f

(

2πn

N

)

, (B.18)

where n ≡ (n1, n2, n3). In the case of massless propagators, the zero-mode is left out.

C. The 3-loop basketball in lattice regularization

In order to work out the expansion in eq. (B.12), we find it convenient to return from

lattice units to physical units, considering then the function in eq. (B.17). Let us introduce
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the scalar propagator on the lattice,

Da(x;m) ≡
∫ π/a

−π/a

d3p

(2π)3
eip·x

p̃2 + m2
, (C.1)

where now p̃2 ≡ ∑3
i=1 p̃2

i , p̃i ≡ 2
a sin api

2 . For x 6= 0, the propagator remains finite in the

continuum limit a → 0,

D0(x;m) =
exp(−m|x|)

4π|x| , (C.2)

while for x = 0, it contains a linear divergence as shown in eq. (B.8),

Da(0;m) =
1

4πa

[

Σ − m̂ + O(m̂)2
]

. (C.3)

The integral we will be concerned with here is of the “basketball” type,

B(n)
a ({mi}) ≡

∑

x

a3
n

∏

i=1

Da(x;mi) . (C.4)

For n = 3, this equals the integral Ha defined in eq. (B.5), and for general masses, the

expansion close to the continuum limit is of the form [21]

B(3)
a ({mi}) =

1

(4π)2

[

ln
6

a
∑

i mi
+

1

2
+ ζ + O(ami)

]

. (C.5)

The challenge now is to find the corresponding expansion for n = 4.

The basic approach we follow is similar to the one used for the basketball integral in di-

mensional regularization in refs. [32]. The summation over configuration space in eq. (C.4)

is divided into two regions, |x| ≤ r and |x| > r. We assume ami ≪ 1, and can thus choose

a ≪ r ≪ 1

mi
. (C.6)

In the region |x| ≤ r, we now have |x|mi ≪ 1, and can expand in the masses; in the region

|x| > r, we have a/|x| ≪ 1, and can use the continuum approximation for the propagators.

The region |x| > r. The region of large |x| gives a contribution which remains finite in

the limit a → 0. It can thus be evaluated employing eq. (C.2). The integral is elementary,

and we obtain

lim
a→0

∆|x|>rB
(4)
a ({mi}) =

∫ ∞

r
4π|x|2d|x|

4
∏

i=1

D0(x;mi)

=
1

(4π)3

[

1

r
+ M

(

ln Mr + γE − 1

)]

+ O(M2r) , (C.7)

where M ≡ m1 + m2 + m3 + m4. Note in passing, for future reference, that

∫ ∞

r
4π|x|2d|x|

3
∏

i=1

D0(x;mi) =
1

(4π)2

(

− ln M̃r − γE

)

+ O(M̃r) , (C.8)

where M̃ ≡ m1 + m2 + m3.
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The region |x| ≤ r. In the region of small |x|, we rewrite the propagator of eq. (C.1) in

the equivalent form

Da(x;m) =

∫ π/a

−π/a

d3p

(2π)3

[

eip·x

p̃2
+

1

p̃2 + m2
− 1

p̃2
− m2 eip·x − 1

p̃2(p̃2 + m2)

]

. (C.9)

The point of this rewriting is that for a → 0 and x 6= 0, the first term behaves as ∼
1/4π|x|, the next two combine into a constant ∼ −m/4π, while the last term, which is

both ultraviolet and infrared finite, behaves as O(m2|x|). Therefore, if we consider the

limit a → 0, rmi ≪ 1, the last term does not contribute in ∆|x|≤rB
(4)
a ({mi}):

∫ r

0
|x|2d|x| 1

(4π|x|)3O(m2
i |x|) ∼ O(m2

i r) . (C.10)

The same is true for the case that there are two or more appearances of the constant term:
∫ r

0
|x|2d|x| 1

(4π|x|)2O(mi)O(mj) ∼ O(mimjr) . (C.11)

Thus the only contributions come from four appearances of the first term in eq. (C.9), and

three appearances of the first term as well as one appearance of the middle terms:

lim
a→0

∆|x|≤rB
(4)
a ({mi}) = lim

a→0

∑

|x|≤r

a3 [Da(x; 0)]4 (C.12)

+ lim
a→0

{ 4
∑

i=1

[

Da(0;mi) − Da(0, 0)

]

∑

|x|≤r

a3 [Da(x; 0)]3
}

+ O(m2
i r) .

Here and in the following, lima→0 is meant in a symbolic sense, since the sums actually

diverge as a → 0.

Given that Da(0;mi)−Da(0, 0) is known (cf. eq. (C.3)), we are left with the evaluation

of the sums on the first and second rows in eq. (C.12). Since the propagators are massless,

the outcomes only depend on the ratio r/a, where a ≪ r. The first of the sums can be

performed by extending the sum to be over all space, and taking the continuum limit in

the resulting subtraction, which is ultraviolet finite:

lim
a→0

∑

|x|≤r

a3 [Da(x; 0)]4 = lim
a→0

∑

x

a3 [Da(x; 0)]4 − lim
a→0

∑

|x|>r

a3 [Da(x; 0)]4

= lim
a→0

∑

x

a3 [Da(x; 0)]4 − 1

(4π)3
1

r
, (C.13)

where we used eq. (C.7). The latter sum is slightly more difficult because it would be

infrared divergent at large distances, but it can be performed as above, once we regulate

the infrared with mass terms, and use then eqs. (C.5), (C.8):

lim
a→0

∑

|x|≤r

a3 [Da(x; 0)]3 = lim
M̃→0

{

lim
a→0

∑

x

a3
3

∏

i=1

Da(x;mi) − lim
a→0

∑

|x|>r

a3
3

∏

i=1

Da(x;mi)

}

= lim
a→0

{

1

(4π)2

(

ln
6

aM̃
+

1

2
+ ζ + ln M̃r + γE

)}

. (C.14)
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The infrared regulator M̃ is seen to cancel in eq. (C.14), as it should.

Combining now eqs. (C.3), (C.7), (C.12), (C.13) and (C.14), terms singular in r cancel,

and the limit mir → 0 can be taken. The Euler gamma-constants γE also cancel, and we

finally obtain

B(4)
a ({mi}) =

∑

x

a3 [Da(x; 0)]4 − M

(4π)3

(

ln
6

aM
+

3

2
+ ζ

)

+ O(am2
i ) . (C.15)

The task remains to evaluate the sum in eq. (C.15). Employing the techniques in-

troduced in ref. [33] and worked out for the three-dimensional case in ref. [34], we find

that

∑

x

a3 [Da(x; 0)]4 ≡ 1

a

Σ

(4π)3
θ , θ = 3.0122(1) , (C.16)

where the number in parentheses indicates the uncertainty of the last digit. Combining

eqs. (C.15), (C.16) leads to eq. (B.12).

Finally, recall for completeness that in dimensional regularization (DR) at d = 3− 2ǫ,

the 2-loop [35] and 3-loop [36] basketball integrals read (M =
∑4

i=1 mi, M̃ =
∑3

i=1 mi)

B
(3)
DR({mi}) =

µ−4ǫ

(4π)2

(

1

4ǫ
+ ln

µ̄

M̃
+

1

2
+ O(ǫ)

)

, (C.17)

B
(4)
DR({mi}) = − µ−6ǫ

(4π)3
M

(

1

4ǫ
+

3

2
ln

µ̄

M
+ 2 +

1

2

4
∑

i=1

mi

M
ln

M

2mi
+ O(ǫ)

)

. (C.18)

For a complete discussion of basketball integrals in dimensional regularization, see ref. [37].
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